P-1.22

Surface Adsorption Is a Key Determinant of A-synuclein Condensate Maturation into Toxic Aggregates

Rebecca J. Thrush 1, Devkee M. Vadukul 1, Sian C. Allerton¹, Marko Storch ², Francesco A. Aprile ¹

¹ Imperial College London, London, United Kingdom

²London Biofoundry, London, United Kingdom

 α -Synuclein (α S) self-assembles into amyloid fibrils during neurodegeneration. α S can also self-assemble via liquid-liquid phase separation (LLPS) to form condensates. The link between these processes is evident, as α S condensates can mature into amyloids. Yet, the mechanisms driving this maturation are largely unknown, particularly when including post-translational modifications known to affect α S self-assembly in the absence of LLPS, e.g., N-terminal truncation (NTT). Moreover, condensates are primarily studied as isolated entities; however, it is increasingly clear that they interact with various cellular components and surfaces. Here, we developed a quantitative microscopy-based protocol to investigate how NTT influences α S condensate formation, well surface adsorption, and maturation. We found that increasing NTT, which reduces α S hydrophobicity, inhibits condensate sedimentation, enhances surface adsorption, and accelerates maturation. Thus, we propose that enhanced adsorption, which increases the condensate surface-to-volume ratio, promotes α S nucleation at the condensate-bulk solution interface, accelerating aggregation. Our research indicates that α S condensate adsorption at cellular surfaces may drive toxic aggregate formation in neurodegeneration.