P-1.30

Exploring the Free Energy Landscape of Amyloid-beta Peptides in Different Environments Using Metadynamics

Andrea Ciccolo¹

¹ University of Messina, Messina, Italy

The Amyloid-Beta ($A\beta$) peptide is an Intrinsically Disordered Protein (IDP) whose aggregation process at the neuronal membrane is considered a central event associated with the onset of Alzheimer's disease (AD). A β is a 39-42 amino acid long peptide, and the ratio of its alloforms A β 40-to-A β 42 is believed to play a role in AD development. Due to the transient secondary structures of A β , the exploration of its conformational space under physiological conditions remains challenging and calls for highresolution studies. Here, to explore the complex free energy landscape of the A β 40 and A β 42 monomers and their changes due to different environments, we have conducted ten-microsecond Well-Tempered Metadynamics simulations. In particular, we studied A β structural transitions in different solvents: water, hexafluoroisopropanol (HFIP), and dimethyl sulfoxide (DMSO); the latter two represent useful models for investigating how the properties of the environment influence the tendency of A β to sample specific secondary structures. Our results show that in water, both A β 40 and A β 42 mainly sample disordered conformations with a non-negligible β -sheet content. Conversely, HFIP promotes α -helix formation, while DMSO, primarily acting as a hydrogen bond acceptor, favors protein unfolding, particularly of β -sheet structures.